numpy.lib.mixins.NDArrayOperatorsMixin#
- class numpy.lib.mixins.NDArrayOperatorsMixin[源代码]#
定义所有使用 __array_ufunc__ 的运算符特殊方法的混入.
此类实现了 Python
operator模块中定义的大多数内置运算符的特殊方法,包括比较运算符(==,>等)和算术运算符(+,*,-等),通过交给__array_ufunc__方法,子类必须实现该方法.它对于编写不继承自
numpy.ndarray的类很有用,但是应该像数组一样支持算术和 numpy 通用函数,如 :external+neps NEP 13 — A mechanism for overriding Ufuncs 中所述.作为一个简单的例子,考虑这个
ArrayLike类的实现,它只是包装了一个NumPy数组,并确保任何算术运算的结果也是一个ArrayLike对象:>>> import numbers >>> class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): ... def __init__(self, value): ... self.value = np.asarray(value) ... ... # One might also consider adding the built-in list type to this ... # list, to support operations like np.add(array_like, list) ... _HANDLED_TYPES = (np.ndarray, numbers.Number) ... ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... out = kwargs.get('out', ()) ... for x in inputs + out: ... # Only support operations with instances of ... # _HANDLED_TYPES. Use ArrayLike instead of type(self) ... # for isinstance to allow subclasses that don't ... # override __array_ufunc__ to handle ArrayLike objects. ... if not isinstance( ... x, self._HANDLED_TYPES + (ArrayLike,) ... ): ... return NotImplemented ... ... # Defer to the implementation of the ufunc ... # on unwrapped values. ... inputs = tuple(x.value if isinstance(x, ArrayLike) else x ... for x in inputs) ... if out: ... kwargs['out'] = tuple( ... x.value if isinstance(x, ArrayLike) else x ... for x in out) ... result = getattr(ufunc, method)(*inputs, **kwargs) ... ... if type(result) is tuple: ... # multiple return values ... return tuple(type(self)(x) for x in result) ... elif method == 'at': ... # no return value ... return None ... else: ... # one return value ... return type(self)(result) ... ... def __repr__(self): ... return '%s(%r)' % (type(self).__name__, self.value)
在
ArrayLike对象与数字或 numpy 数组之间的交互中,结果始终是另一个ArrayLike:>>> x = ArrayLike([1, 2, 3]) >>> x - 1 ArrayLike(array([0, 1, 2])) >>> 1 - x ArrayLike(array([ 0, -1, -2])) >>> np.arange(3) - x ArrayLike(array([-1, -1, -1])) >>> x - np.arange(3) ArrayLike(array([1, 1, 1]))
请注意,与
numpy.ndarray不同,ArrayLike不允许与任意未识别的类型进行操作.这确保了与 ArrayLike 的交互保留了明确定义的强制转换层次结构.