numpy.char.add#

char.add(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'add'>#

按元素方式相加参数.

参数:
x1, x2array_like

要相加的数组.如果 x1.shape != x2.shape ,则它们必须可以广播到公共形状(这将成为输出的形状).

outndarray, None, or tuple of ndarray and None, optional

存储结果的位置.如果提供,则它必须具有输入广播到的形状.如果未提供或为None,则返回一个新分配的数组.一个元组(可能仅作为关键字参数)的长度必须等于输出的数量.

其中类数组,可选

此条件会在输入上进行广播.在条件为True的位置, out 数组将被设置为ufunc结果.否则, out 数组将保留其原始值.请注意,如果通过默认的 out=None 创建一个未初始化的 out 数组,则其中条件为False的位置将保持未初始化.

\kwargs

对于其他仅限关键字的参数,请参见 ufunc docs .

返回:
加法ndarray 或标量

x1x2 的和,按元素计算.如果 x1x2 都是标量,则这也是一个标量.

注释

在数组广播方面,等效于 x1 + x2 .

示例

>>> import numpy as np
>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[  0.,   2.,   4.],
       [  3.,   5.,   7.],
       [  6.,   8.,  10.]])

+ 运算符可以用作 ndarrays 上 np.add 的简写.

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 + x2
array([[ 0.,  2.,  4.],
       [ 3.,  5.,  7.],
       [ 6.,  8., 10.]])