numpy.hamming#

numpy.hamming(M)[源代码]#

返回 Hamming 窗.

Hamming 窗是通过使用加权余弦形成的锥形.

参数:
Mint

输出窗口中的点数. 如果为零或更小,则返回一个空数组.

返回:
outndarray

该窗口的最大值已归一化为 1(仅当样本数为奇数时,值才为 1).

注释

Hamming 窗定义为

\[w(n) = 0.54 - 0.46\cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1\]

Hamming 窗以 J. W. Tukey 的同事 R. W. Hamming 的名字命名,并在 Blackman 和 Tukey 中进行了描述.建议用于平滑时域中的截断自协方差函数.大多数对 Hamming 窗的引用来自信号处理文献,在信号处理文献中,它被用作许多用于平滑值的窗函数之一.它也称为保迹函数(意思是“去除足部”,即平滑采样信号开始和结束处的不连续性)或逐渐变细函数.

参考

[1]

Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

[2]

E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-110.

[3]

Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function

[4]

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University Press, 1986, page 425.

示例

>>> import numpy as np
>>> np.hamming(12)
array([ 0.08      ,  0.15302337,  0.34890909,  0.60546483,  0.84123594, # may vary
        0.98136677,  0.98136677,  0.84123594,  0.60546483,  0.34890909,
        0.15302337,  0.08      ])

绘制窗口和频率响应.

import matplotlib.pyplot as plt
from numpy.fft import fft, fftshift
window = np.hamming(51)
plt.plot(window)
plt.title("Hamming window")
plt.ylabel("Amplitude")
plt.xlabel("Sample")
plt.show()
../../_images/numpy-hamming-1_00_00.png
plt.figure()
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
plt.title("Frequency response of Hamming window")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
plt.axis('tight')
plt.show()
../../_images/numpy-hamming-1_01_00.png