numpy.bitwise_count#
- numpy.bitwise_count(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'bitwise_count'>#
计算
x的绝对值中 1 的位数.类似于 C++ 中的内置 int.bit_count 或popcount.- 参数:
- xarray_like, 无符号整数
输入数组.
- outndarray, None, or tuple of ndarray and None, optional
存储结果的位置.如果提供,则它必须具有输入广播到的形状.如果未提供或为None,则返回一个新分配的数组.一个元组(可能仅作为关键字参数)的长度必须等于输出的数量.
- 其中类数组,可选
此条件会在输入上进行广播.在条件为True的位置, out 数组将被设置为ufunc结果.否则, out 数组将保留其原始值.请注意,如果通过默认的
out=None创建一个未初始化的 out 数组,则其中条件为False的位置将保持未初始化.- \kwargs
对于其他仅限关键字的参数,请参见 ufunc docs .
- 返回:
- yndarray
输入中相应的 1 位数.为所有整数类型返回 uint8.如果 x 是标量,则这是一个标量.
参考文献
[2]Wikipedia, “Hamming weight”, https://en.wikipedia.org/wiki/Hamming_weight
示例
>>> import numpy as np >>> np.bitwise_count(1023) np.uint8(10) >>> a = np.array([2**i - 1 for i in range(16)]) >>> np.bitwise_count(a) array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=uint8)