numpy.random.poisson#

random.poisson(lam=1.0, size=None)#

从泊松分布中抽取样本.

泊松分布是大 N 情况下二项分布的极限.

备注

新代码应使用 poisson 方法,该方法是 Generator 实例的一个方法;请参阅 快速入门 .

参数:
lamfloat 或 float 的类数组

固定时间间隔内发生的事件的预期数量,必须 >= 0.一个序列必须可以广播到请求的大小.

sizeint 或 int 元组,可选

输出形状.如果给定的形状是,例如, (m, n, k) ,那么将抽取 m * n * k 个样本.如果 size 是 None (默认),如果 lam 是标量,则返回单个值.否则,抽取 np.array(lam).size 个样本.

返回:
outndarray 或标量

从参数化的泊松分布中抽取的样本.

参见

random.Generator.poisson

新代码应该使用它.

注释

泊松分布的概率质量函数 (PMF) 是

\[f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}\]

对于预期间隔为 \(\lambda\) 的事件,泊松分布 \(f(k; \lambda)\) 描述了在观察到的间隔 \(k\) 内发生 \(\lambda\) 个事件的概率.

由于输出被限制在 C int64 类型的范围内,当 lam 在最大可表示值的 10 sigma 范围内时,会引发 ValueError.

参考文献

[1]

Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/PoissonDistribution.html

[2]

Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution

示例

从分布中抽取样本:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

显示样本的直方图:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, density=True)
>>> plt.show()
../../../_images/numpy-random-poisson-1_00_00.png

为 lambda 100 和 500 各绘制 100 个值:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))