numpy.multiply#
- numpy.multiply(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'multiply'>#
按元素相乘参数.
- 参数:
- x1, x2array_like
要相乘的输入数组.如果
x1.shape != x2.shape,它们必须可广播到通用形状(这将变为输出的形状).- outndarray, None, or tuple of ndarray and None, optional
结果存储到的位置.如果提供,它必须具有输入的广播到的形状. 如果未提供或为 None,则返回一个新分配的数组.一个元组(可能只能作为关键字参数)必须具有等于输出数量的长度.
- wherearray_like, optional
此条件在输入上进行广播.在条件为 True 的位置, out 数组将设置为 ufunc 结果.否则, out 数组将保留其原始值.请注意,如果通过默认值
out=None创建一个未初始化的 out 数组,则其中条件为 False 的位置将保持未初始化.- \kwargs
对于其他仅限关键字的参数,请参阅 ufunc docs .
- 返回:
- yndarray
x1 和 x2 的乘积,按元素计算.如果 x1 和 x2 都是标量,则这是一个标量.
注释
在数组广播方面等效于 x1 * x2 .
示例
>>> import numpy as np >>> np.multiply(2.0, 4.0) 8.0
>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]])
*运算符可以用作 ndarray 上np.multiply的简写.>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> x1 * x2 array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]])