numpy.true_divide#
- numpy.true_divide(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'divide'>#
按元素划分参数.
- 参数:
- x1array_like
被除数数组.
- x2array_like
除数数组.如果
x1.shape != x2.shape,则它们必须可以广播到通用形状(这将成为输出的形状).- outndarray, None, or tuple of ndarray and None, optional
存储结果的位置.如果提供,则它必须具有输入广播到的形状.如果未提供或为None,则返回一个新分配的数组.一个元组(可能仅作为关键字参数)的长度必须等于输出的数量.
- 其中类数组,可选
此条件会在输入上进行广播.在条件为True的位置, out 数组将被设置为ufunc结果.否则, out 数组将保留其原始值.请注意,如果通过默认的
out=None创建一个未初始化的 out 数组,则其中条件为False的位置将保持未初始化.- \kwargs
对于其他仅限关键字的参数,请参见 ufunc docs .
- 返回:
- yndarray 或标量
商
x1/x2,按元素计算.如果 x1 和 x2 都是标量,则这是一个标量.
参见
seterr设置在溢出,下溢和除零时是引发异常还是发出警告.
注释
在数组广播方面,等效于
x1/x2.true_divide(x1, x2)函数是divide(x1, x2)的别名.示例
>>> import numpy as np >>> np.divide(2.0, 4.0) 0.5 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.divide(x1, x2) array([[nan, 1. , 1. ], [inf, 4. , 2.5], [inf, 7. , 4. ]])
/运算符可以用作 ndarray 上np.divide的简写.>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = 2 * np.ones(3) >>> x1 / x2 array([[0. , 0.5, 1. ], [1.5, 2. , 2.5], [3. , 3.5, 4. ]])